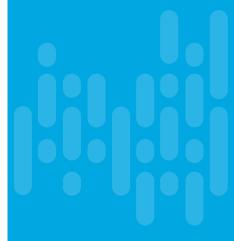
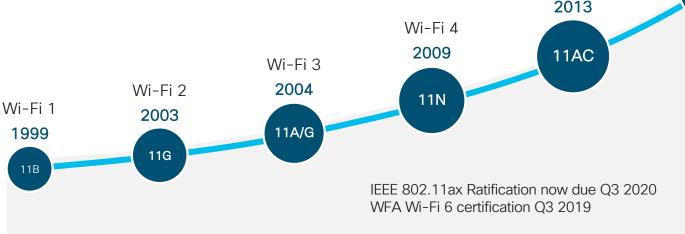


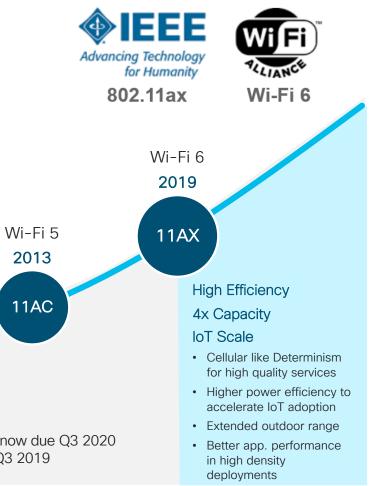
Wi-Fi6 update IX Forum 14

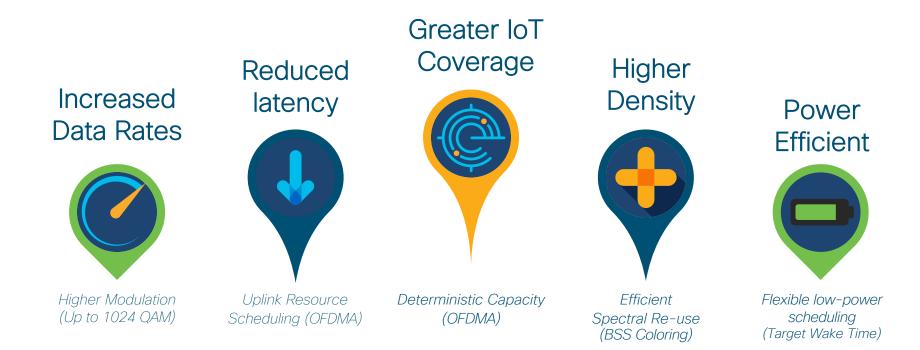
Flavio Correa – <u>flcorrea@cisco.com</u>


Technical Solutions Architect

CCIE Wireless #38913


Agenda

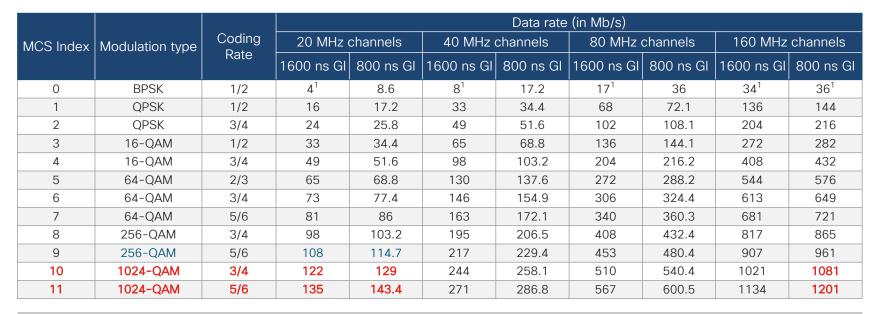

- Como chegamos até aqui?
- Benefícios e o que muda com o Wi-Fi6
- · Status da solução e adoção no mercado
- Wi-Fi6E e nova alocação de espectro não licenciado


How did we get here?

- 802.11ax and Wi-Fi 6 are interchangeable engineering and marketing terms that have the same meaning
- You may also sometimes see the term "high-efficiency wireless" or "HEW" used

What Wi-Fi6 brings to the table?

Faster Speeds | Optimized Capacity | IoT Ready


Wi-Fi 6 is all about high efficiency wireless

Four things determine Air Time Efficiency

- Data rate (Modulation density) or QAM (how many Bit's per Radio Symbol) 64 QAM is more robust but 1024 QAM is a lot faster
- 2. Number of spatial streams and spatial reuse (introduction of OFDMA and Resource Units) and UL/DL MU-MIMO
- 3. Channel bandwidth How Many frequencies can we modulate at one time
- 4. Protocol overhead Preamble/Ack/BA, Guard Interval "GI" etc.

Modu	lation density	gains				
64 QAM	256 QAM	1024 QAM				
802.11agn 6b/symbol	802.11ac 8b/symbol	802.11ax 10b/symbol				
Wi-Fi channel width						
20 MHz 40 MHz 80 MHz 160 MHz						

.11ax data-rate chart for 1 spatial stream What is the maximum theorical Wi-Fi6 throughput

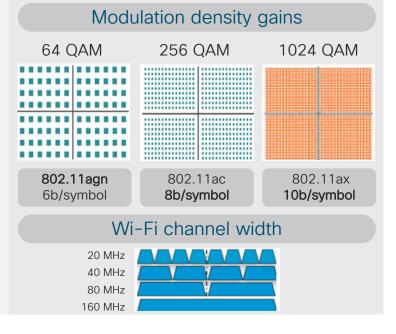
Up to 1.2Gb with 1 radio, up to 10 Gb* with 8 radios @ 160 MHz

*Devices were presented at CES 2018 with a top speed of 11Gbit/s

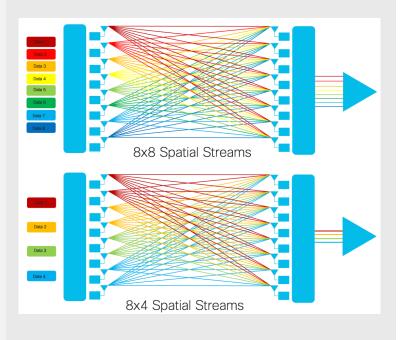
¹Source <u>https://en.wikipedia.org/wiki/IEEE_802.11ax</u>

1024-QAM 40 MHz Channel How far can 1024-QAM go?

• Single-antenna devices (smart-phone) should see MCS10-11 with 40 dB SNR


Four things determine "Air Time Efficiency" Wi-Fi's 1-5 have delivered on 3 of these....

2. Number of spatial streams

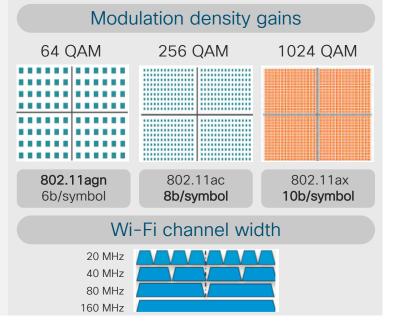

3. Channel bandwidth

4. Protocol overhead

Wi-Fi 6 Spatial Streams – Up from 4 to 8 SS 100% more to Work with!

- Spatial reuse is not new, however we have twice as many with 802.11ax
- Spatial multiplexing allows for a 1-1 increase in the spectrum under ideal conditions – MU-MIMO x 8? – More later....
- Higher modulation densities require higher SNR to protect against corruption
- 802.11ax provides 8 SS which can be mixed and matched to reinforce signal and increase SNR for any other SS's data

The Fundamentals of Spatial Streams – TechWise TV https://www.youtube.com/watch?v=EeK4ISiN0Dw

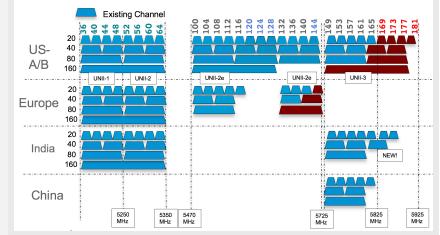

Four things determine "Air Time Efficiency" Wi-Fi's 1-5 have delivered on 3 of these....

1. Data rate (Modulation density)

2. Number of spatial streams

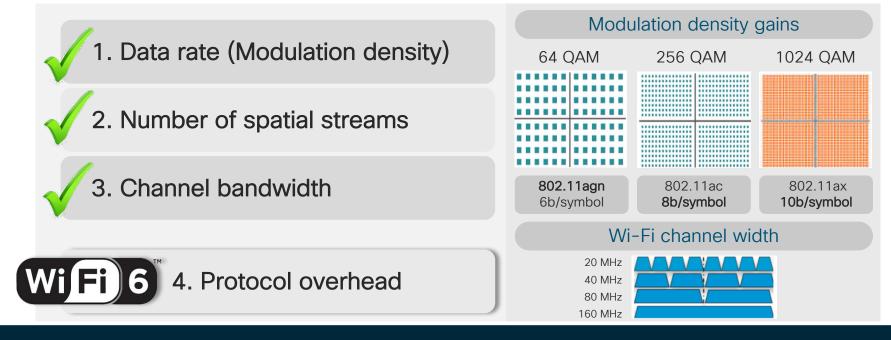
3. Channel bandwidth

4. Protocol overhead



Channel Bonding – 20/40/80/80+80 Wi-Fi 6 Maintains Wi-Fi 5's abilities

- Channel bonding enables OFDM and OFDMA to increase the amount of throughput per frame by bonding existing 20 MHz channel assignments together to create very wide 40/80/160 or 80+80 MHz channel
- Each bonded 20 MHz channel comes with a 3dB SNR penalty because of the wider channel
- 80 MHz channels on Dual 5 Ghz AP's consume 8 channels per AP placement – the net result if, not careful, is the same N=3 channel re-use as 2.4 GHz band and heavy loss due to co-channel interference
- In a drag race, 80 MHz is pretty impressive
- Most installations are about driving a bus not racing dragsters

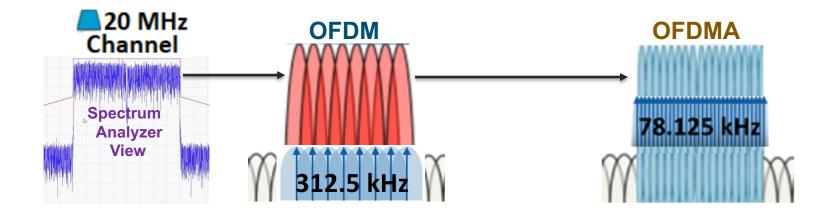

The Fundamentals of Spatial Streams – TechWise TV https://www.youtube.com/watch?v=EeK4ISiN0Dw

More spectrum is coming with Wi-Fi6E!

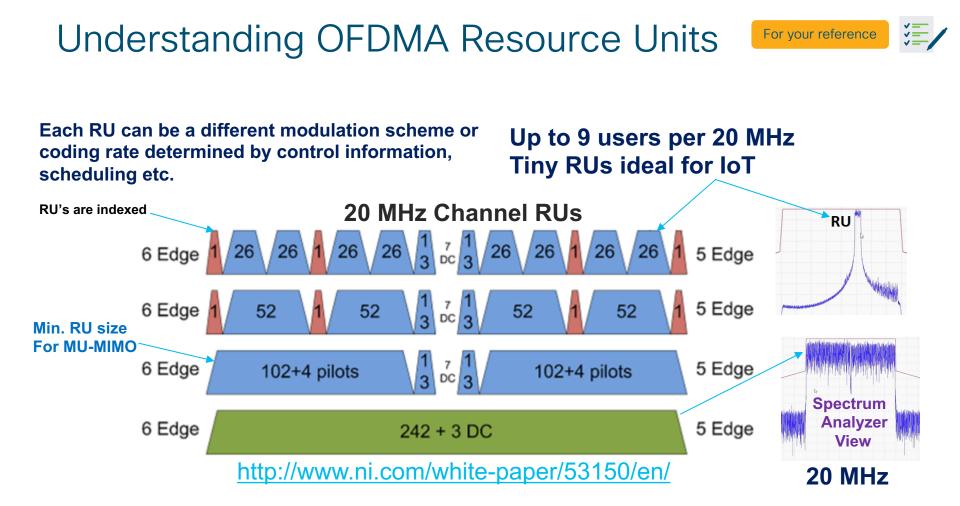
5 GHz 20/40/80/160 MHz Channels

Four things determine "Air Time Efficiency" Wi-Fi's 1-5 have delivered on 3 of these....

OFDMA – Multiple Access Phy IS the game changer!


So, What's Wrong with OFDM you say? Nothing really- It's a dear old friend, But.....

- OFDM has made fantastic strides in throughput, and capacity
- Design methodologies and the technology have evolved by leaps and bounds
- OFDM (Wi-Fi's 1-5) only supports one Client PPDU per Frame. Each Clients data must have it's own Framing, this is inefficient and leaves Airtime on the table.
- As more Clients join the cell, latency will increase – Inevitably
- Today, we compensate with over design

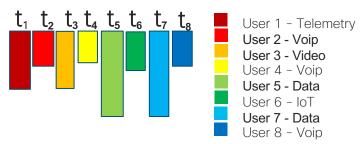

Deconstructing OFDM and OFDMA

OFDM and OFDMA populate a 20 MHz channel using sub-carriers but OFDMA has More

- "OFDM" channel is divided by Larger subcarriers which are not individually addressable
- <u>"OFDMA" channel Sub-Carriers can be grouped into individually addressable "Resource Units", user data</u> <u>can be "Multiplexed" onto a Frames RU's</u>

All packets big and small get processed MUCH FASTER

Higher Efficiency: Requires a Design Philosophy OFDM Today


- When a client has data to transmit, it's given the whole channel, to support bursty data
- As data rates go up, PHY/MAC (preamble, backoff, Ack/BA, any RTS/CTS, etc) overheads don't diminish
- Aggregation can only take us so far
- Example 87% of frames less than 320 bytes
- Voice average 100 bytes
- More clients also results in longer intervals between Tx-Ops – increasing jitter (latency)

Topic / Item	Count	Average	Min val	Max val	Rate (ms)	Percent
 Packet Lengths 	105198	225.52	14	1623	1.6173	100%
0-19	14274	14.00	14	14	0.2194	13.57%
20-39	10605	26.89	20	39	0.1630	10.08%
40-79	1122	64.11	40	79	0.0172	1.07%
80-159	6447	115.83	80	159	0.0991	6.13%
160-319	59472	283.61	160	319	0.9143	56.53%
320-639	12440	363.13	320	636	0.1913	11.83%
640-1279	326	892.03	640	1278	0.0050	0.31%

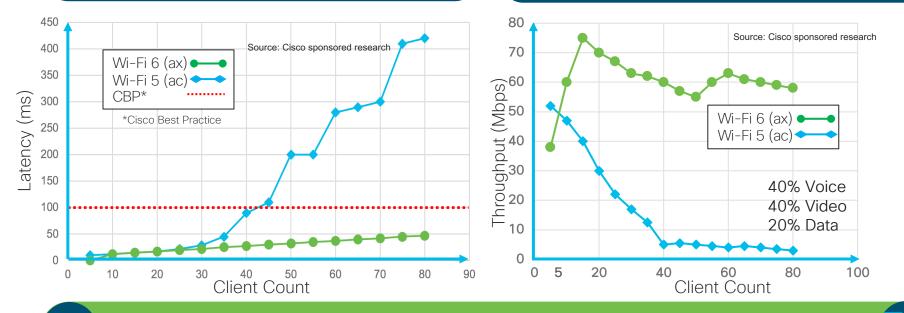
87.37% of Frames =<320 bytes of data!

OFDMA – Using Subcarriers more efficiently Maximizing Client Count – Lowering Latency

OFDM

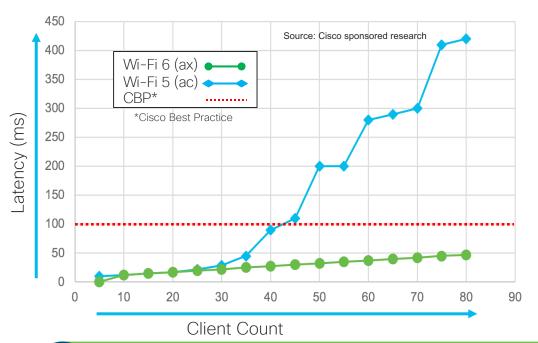
- Each User gets 1 time slot and uses the whole channel bandwidth
- In this example with 8 users, each User will wait t₈ before Next Tx_op (Assuming no QOS)
- As more clients Join the cell, Latency –and Jitter Increases

OFDMA


- Multi user Packet makes flight more efficient
- Much more regular and consistent TX_op
- Deterministic nature –
- Multiplexing Users onto Single frames, reduces overhead, and Latency

Each subcarrier is a transport – Latency goes up when subcarriers go out "half empty"... OFDMA solves this by allowing <u>multi-user packets to go out on one subcarrier</u>

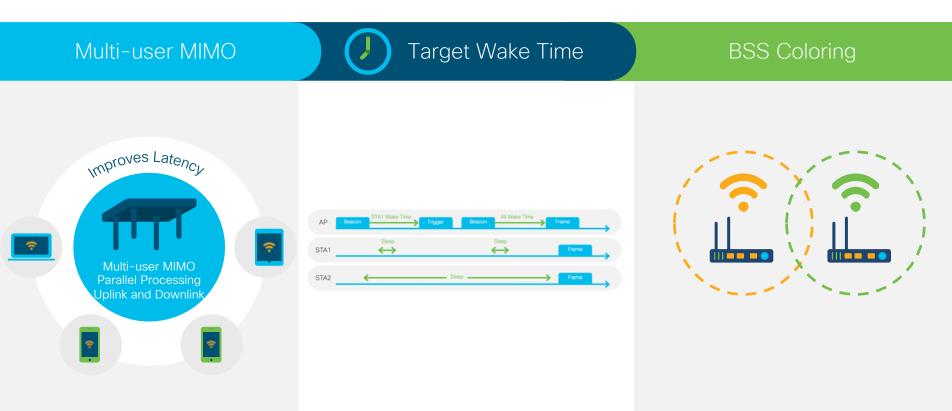
802.11ax (OFDMA) provides determinism at scale: Enabling high-quality voice/video/data services cost effectively


Linear VOICE delay

Consistent **DATA** throughput

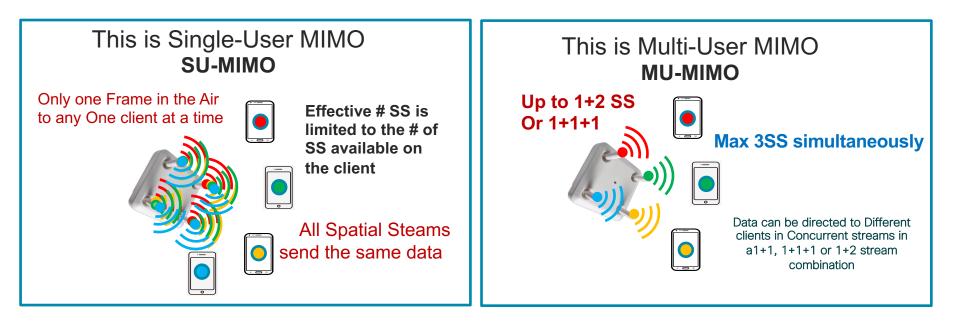
Wi-Fi 6 is not only cost-effective & ubiquitous but is now capable of delivering SLAs

802.11ax provides higher VOICE/VIDEO capacity Lower latency at increased density

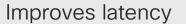

- With 11ac, as density (Clients/AP) increase from 25 (e.g. class room) to 50 (e.g. conference hall), latency increases 4x from an acceptable 50ms (99%-ile) to an unacceptable 200ms - <u>unusable</u> <u>service</u>!
- By leveraging OFDMA, delay is bounded to 50ms up to 75 Clients/AP resulting in 2- 3x the VOICE user capacity with high quality

Wi-Fi 6 can achieve up to 3x the VOICE capacity over 11ac in High-Density (HD)

Other interesting new capabilities of Wi-Fi6



Wi-Fi 6 additional enhancements

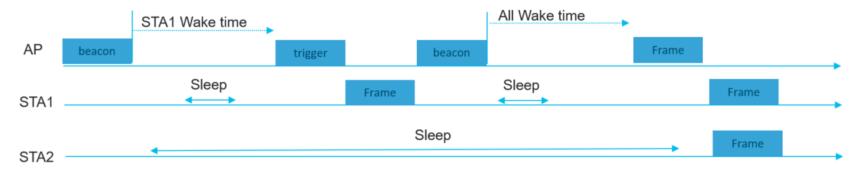

Multi-User MIMO (MU-MIMO) introduced 11ac Wave-2 How does it work? Why is it an advantage?

SU - MIMO vs. MU - MIMO

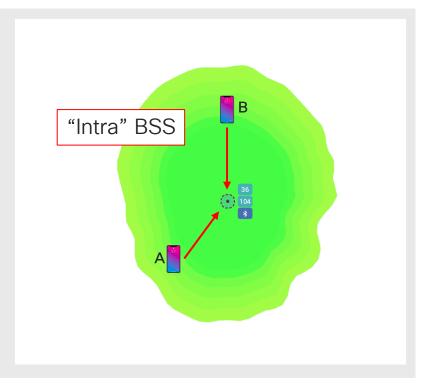
Wi-Fi 6 enhancements to Multi-user MIMO The previous slides for .11acW2 holds true for .11ax However there are NEW supported features:

- MU-MIMO is now supported in Uplink
- 8 MU-MIMO transmissions (users in a group) up from 4
- AP calculates a channel matrix for each user and simultaneous steer beams to different users (creating groups and managing)
- Each MU-MIMO transmission may have its own MCS rate
- Larger RU frames 106 and above are used for MU-MIMO
- MU and SU-MIMO is decided by AP w/MU- favoring larger packets

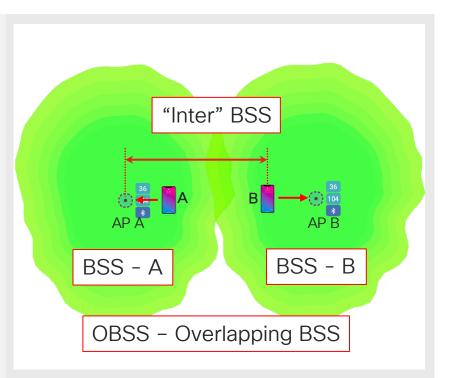
IoT Benefits using Wi-Fi 6


More IoT devices coming on line everyday – Strong need for 2.4 GHz

- Superior battery life for IoT and mobile devices Using Target Wake Time
- Parallel Processing for Spectrum Efficiency MU-MIMO
- Small Packet aggregation (using OFDMA) for reduced latency
- Longer Guard interval for greater range outdoor links
- BSS Coloring helps increase channel reuse
- Better spectrum coexistence with other technologies e.g. Bluetooth, Zigbee
 - 2.4 GHz No longer a junk band It simply needs to work

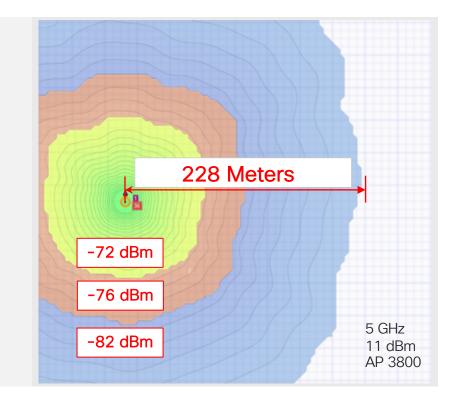

Target Wake Time – Putting Devices to Sleep

- With Target Wake Time (TWT), the AP can schedule phones and IoT devices sleep for long durations (up to 5 years) and then wake the individual device up.
- Devices can be configured to wake up as a group to communicate at the same time sharing the channel for increased network capacity and reduced battery drain.
- Use of BSS Color field and UL/DL flag in preamble to enable intra PPDU power Saving


Wi-Fi Contention and Spatial Reuse Why is BSS coloring important?

- Two stations associated to the same AP can not both talk to the same AP at the same time, they will "Interfere" with one another at the AP's receiver
- To prevent this Wi-Fi uses a "contention mechanism" – CCA (Clear Channel Assessment)
- If Sta A listens to the channel and can hear anyone at or above -82 dBm – then the channel is in use and Sta A must back off and try again
- In this way stations will all take turns using the channel and avoid harmful or destructive interference
- An AP and all the Stations associated to it are considered a BSS as all the stations

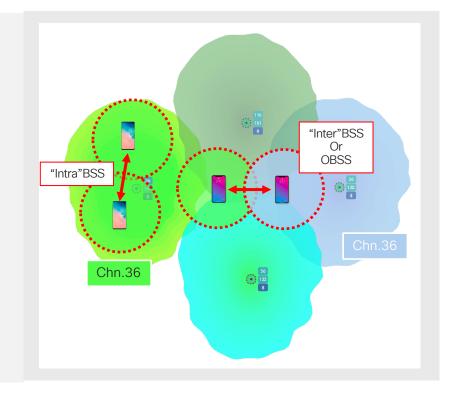
Wi-Fi Contention and Spatial Reuse Why is BSS coloring important?


- What if 2 Sta's are talking to two different AP's on the same channel but are close enough to hear one another
- In Wi-Fi 1-5, this still causes all stations that are close enough to hear one another above -82 dBm to back off and take wait for a clear channel
- Realistically though, Sta A and Sta B are close enough to their respective AP's to both Tx at the same time without interfering at their intended receivers
- AP A is far enough from Sta B, and AP B is far enough from Sta A that both transmissions would be successful without one interfering with the other
- In Wi-Fi 1-5 though there is only the Channel defined as a shared medium, there is no concept of individual BSS's
- BSS A and B form an Overlapping BSS or OBSS

802.11 contention mechanism – Listen before talk and the contention zone

- Using 11 dBm Tx power
 - Cutoff -82 dBm
 - Cutoff -76 dBm
 - Cutoff -72 dBm
- Managed today using:
 - High gain directional antenna's
 - RX-SOP (changing the start of packet threshold)
 - Data rates in use

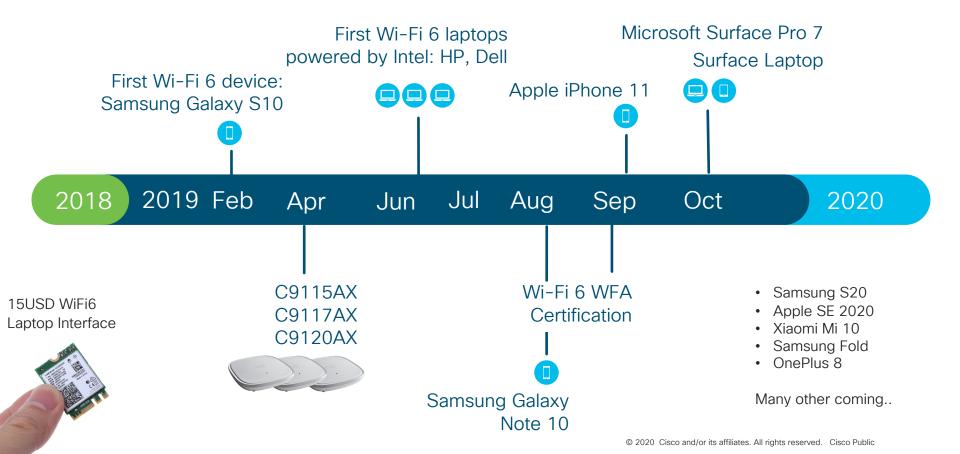
See the 2018 Wireless High density client density design guide https://cs.co/9001D47PT



BSS Coloring – Spatial Reuse Basic service set "BSS" and the overlapping basic service set "OBSS"

- All clients associated on a given AP are operating within the same BSS and will operate on the same BSS color (regardless of the SSID)
- Stations operating on a different AP, may have the same SSID and channel – but will be assigned a different color than mine.
- Each user (station) learns its BSS's color upon association
- Stations detecting the same BSS color (intra-BSS)operate at the default (PD) CCA -82 dBm
- Stations detecting a different BSS color (Inter-BSS) *may be able to use a higher CCA threshold (lower contention i.e -81 to -62 dBm) through **OBSS-PD and re-use lost space

Every Client becomes a sensor reporting what they can hear from the floor – in realtime


*RRM will make the determination and assignment **OBSS-PD Overlapping BSS – Packet Detection

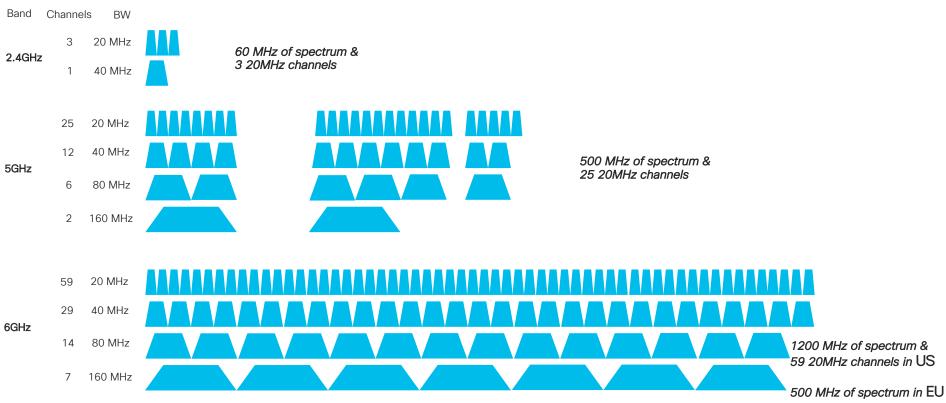
Wi-Fi6 adoption and technology next steps

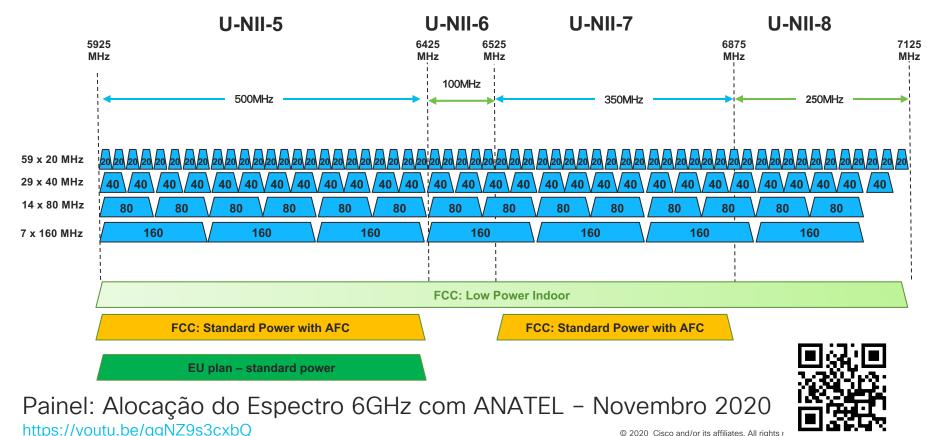
Wi-Fi 6 adoption is accelerating...

And there is more coming soon... WiFi6E More spectrum for Wi-Fi = larger channels

FCC unlocks a massive amount of bandwidth for next-gen Wi-Fi devices

April's unanimous vote opens up 1,200MHz of bandwidth in the 6GHz band for Wi-Fi use. New devices that can take advantage are coming later this year.




US and EU opening up 6GHz band for Wi-Fi usage

Early stages for 6GHz opening in Brazil, Canada, South Korea, Singapore © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

6GHz is the biggest Wi-Fi spectrum expansion ever

6 GHz Spectrum Availability

© 2020 Cisco and/or its affiliates. All rights r

Key take aways

- Wi-Fi6 is the 6th Wi-Fi generation of the technology
- As in previous generations more throughput is possible via more complex modulation schemes, wider channels and MIMO.
- However the most important change is the use of OFDMA that makes the protocol much more efficient with the capabilities to talk with multiple users in download and uplink.
- This makes the technology a much better option for realtime applications like voice and video, as well as better for higher density of users.
- Other capabilities like BSS coloring make channel reuse more efficient and the use of RU and TWT make Wi-Fi applicable for IoT application.
- Wi-Fi6E will bring mode spectrum to Wi-Fi, allowing the use of wider channels and also will not require design drawbacks like transition mode scenarios that impact in performance and security.
- "Long live the Wi-Fi"

Thank you

